Report No. : FA2D1707 # **FCC SAR Test Report** APPLICANT : Quanta Computer Inc **EQUIPMENT**: Laptop Computer BRAND NAME : OLPC MODEL NAME : XO-4 Touch, XO-4 HS Touch, XO-4, XO-4 HS FCC ID : HFS-CL4 **STANDARD** : FCC 47 CFR Part 2 (2.1093) **ANSI/IEEE C95.1-1992** IEEE 1528-2003 FCC OET Bulletin 65 Supplement C (Edition 01-01) The product was completely tested on Feb. 21, 2013. We, SPORTON INTERNATIONAL (KUNSHAN) INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL (KUNSHAN) INC., the test report shall not be reproduced except in full. Reviewed by: Jones Tsai / Manager ilac-MRA SPORTON INTERNATIONAL (KUNSHAN) INC. No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 1 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 # **Table of Contents** | 1. Statement of Compliance | | |--|----| | 2. Administration Data | | | 2.1 Testing Laboratory | | | 2.2 Applicant | | | 2.3 Manufacturer | | | 2.4 Application Details | | | 3. General Information | | | 3.1 Description of Equipment Under Test (EUT) | 6 | | 3.2 Maximum RF output power among production units | 6 | | 3.3 Product Photos | | | 3.4 Applied Standard | 7 | | 3.5 Device Category and SAR Limits | 7 | | 3.6 Test Conditions | | | 4. Specific Absorption Rate (SAR) | | | 4.1 Introduction | | | 4.2 SAR Definition | | | 5. SAR Measurement System | 9 | | 5.1 E-Field Probe | | | 5.2 Data Acquisition Electronics (DAE) | | | 5.3 Robot | 11 | | 5.4 Measurement Server | | | 5.5 Phantom | | | 5.6 Device Holder | | | 5.7 Data Storage and Evaluation | | | 5.8 Test Equipment List | | | 6. Tissue Simulating Liquids | | | 7. SAR System Verification | | | 7.1 Purpose of System Performance check | | | 7.2 System Setup | | | 7.3 SAR System Verification Results | 18 | | 8. EUT Testing Position | | | 9. Measurement Procedures | | | 9.1 Spatial Peak SAR Evaluation | | | 9.2 Power Reference Measurement | | | 9.3 Area & Zoom Scan Procedures | 21 | | 9.4 Volume Scan Procedures | | | 9.5 SAR Averaged Methods | | | 9.6 Power Drift Monitoring | | | 10. Conducted RF Output Power (Unit: dBm) | 23 | | 11. Exposure Positions Consideration | 25 | | 12. SAR Test Results | 31 | | 12.1 Test Records for Body SAR Test | | | 12.2 Repeated SAR Measurement | | | 12.3 Highest SAR Plot | | | 12.4 Simultaneous Multi-band Transmission Analysis | | | 13. Uncertainty Assessment | | | 14. References | | | Appendix A. Plots of System Performance Check | | | Appendix B. Plots of SAR Measurement | | | Appendix C. DASY Calibration Certificate | | | Appendix D. Product Photos | | | Appendix E. Test Setup Photos | | | / INPULIAR =: 1001 OULD : 110100 | | FCC ID: HFS-CL4 # **Revision History** | REPORT NO. | VERSION | DESCRIPTION | ISSUED DATE | |------------|---------|-------------------------|---------------| | FA2D1707 | Rev. 01 | Initial issue of report | Feb. 25, 2013 | TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 3 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 ### 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for Quanta Computer Inc; DUT: Laptop Computer; Brand Name: OLPC; Model Name: XO-4 Touch, XO-4 HS Touch, XO-4, XO-4 HS are as follows. < Highest Reported standalone SAR Summary> | Exposure Position | Frequency Band | Highest Reported 1g-SAR (W/kg) | Equipment Class | |-------------------|------------------|--------------------------------|-----------------| | Body | WLAN 2.4GHz | 0.74 | DTS | | (0 cm Gap) | WLAN 5GHz Band 4 | 1.37 | DTS | | Frequency Band | Equipment Class | Exposure Position | Highest Reported Simultaneous
Transmission 1g-SAR (W/kg) | | |------------------|-----------------|-------------------|---|--| | WLAN 5GHz Band 4 | DTS | Body | 1.37 | | | Bluetooth | DSS | (0 cm Gap) | | | #### Remark: The highest simultaneous transmission is scalar summation of reported standalone SAR per FCC KDB 690783 D01 v01r02, and scalar SAR summation of all possible simultaneous transmission scenarios are < 1.6W/kg. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01). SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 4 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 # 2. Administration Data ### 2.1 Testing Laboratory | Test Site | SPORTON INTERNATIONAL (KUNSHAN) INC. | | | |--------------------|--|--|--| | Test Site Location | No. 3-2, PingXiang Road, Kunshan, Jiangsu Province, P.R.C.
TEL: +86-0512-5790-0158
FAX: +86-0512-5790-0958 | | | ### 2.2 Applicant | Company Name | Quanta Computer Inc | | | |--------------|---|--|--| | Address | No.188, Wen Hwa 2nd Rd., Kuei Shan Hsiang, Tao Yuan Shien, TaiWan | | | ### 2.3 Manufacturer | Company Name | Quanta Computer Inc | | | |--------------|---|--|--| | Address | No.188, Wen Hwa 2nd Rd., Kuei Shan Hsiang, Tao Yuan Shien, TaiWan | | | ### 2.4 Application Details | Date of Start during the Test | Feb. 05, 2013 | |-------------------------------|---------------| | Date of End during the Test | Feb. 21, 2013 | SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 5 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 3. <u>General Information</u> ### 3.1 <u>Description of Equipment Under Test (EUT)</u> | Product Feature & Specification | | | | | |--|--|--|--|--| | EUT | Laptop Computer | | | | | Brand Name | OLPC | | | | | Model Name | XO-4 Touch, XO-4 HS Touch, XO-4, XO-4 HS | | | | | WLAN Module | Trade Name: Liteon Model Name: WCBN603MH | | | | | FCC ID | HFS-CL4 | | | | | WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz TX Frequency WLAN 5GHz Band: 5180 MHz ~ 5240 MHz; 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz | | | | | | Antenna Type | na Type WLAN: Monopole Antenna Bluetooth: Monopole Antenna | | | | | Uplink Modulations | 802.11b: DSSS (DBPSK / DQPSK / CCK)
802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Bluetooth BDR (1Mbps) : GFSK
Bluetooth EDR (2Mbps) : π /4-DQPSK
Bluetooth EDR (3Mbps) : 8-DPSK | | | | | DUT Stage | Identical Prototype | | | | | Remark: | | | | | 1. There are four models of this project. The differences between them are summary below: | Sample List | Model Name | Configuration | |-------------|---------------|------------------------------------| | Sample 1 | XO-4 Touch | Child Product with touch screen | | Sample 2 | XO-4 HS Touch | ITE Product with touch screen | | Sample 3 | XO-4 | Child Product without touch screen | | Sample 4 | XO-4 HS | ITE Product without touch screen | The four types of EUT is not affect SAR test, we only choose sample 1 to perform all test. ### 3.2 Maximum RF output power among production units | IEEE 802.11 average power(dBm) | | | | | | |--------------------------------|-----|------|------|------|------| | Normal | | | | | | | Mode/Band a b g n-HT20 n-HT40 | | | | | | | WLAN 2.4GHz | | 17.5 | 11.5 | 12 | 11.5 | | 5 GHz Band 1 WIFI | 6.5 | | | 7.5 | 7.5 | | 5 GHz Band 4 WIFI | 15 | | | 14.5 | 15 | | | Bluetooth Average power(dBm) | | | |-------------------|------------------------------|----------------------|-------------------| | Mode / Band | 1Mbps
(GFSK) | 2Mbps
(π/4-DQPSK) | 3Mbps
(8-DPSK) | | 2.4 GHz Bluetooth | 1.5 | -3 | -3 | SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 6 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. ^{3.} Voice call is not supported. #### 3.3 Product Photos Please refer to Appendix D. #### 3.4 Applied Standard The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: Report No. : FA2D1707 : 7 of 40 : Rev. 01 - FCC 47 CFR Part 2 (2.1093) - ANSI/IEEE C95.1-1992 - IEEE 1528-2003 - FCC OET Bulletin 65 Supplement C (Edition 01-01) - FCC KDB 447498 D01 v05 - FCC KDB 648474 D04v01 - FCC KDB 248227 D01 v01r02 - FCC KDB 616217 D04 v01 - FCC KDB 865664 D01 v01 ### 3.5 Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. #### 3.6 Test
Conditions #### 3.6.1 Ambient Condition | Ambient Temperature | 20 to 24 ℃ | |---------------------|------------| | Humidity | < 60 % | #### 3.6.2 Test Configuration During WLAN SAR testing EUT is configured with the WLAN continuous TX tool, and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting Duty factor observed as below: For WLAN SAR testing, WLAN engineering testing software installed on the EUT can provide continuous transmitting RF signal. SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number TEL: 86-0512-5790-0158 Report Issued Date: Feb. 25, 2013 FAX: 86-0512-5790-0958 Report Version FCC ID: HFS-CL4 ### 4. Specific Absorption Rate (SAR) #### 4.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. ### 4.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 8 of 40 Report Issued Date : Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 ### 5. SAR Measurement System Fig 5.1 SPEAG DASY System Configurations The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - > The electro-optical converter (EOC) performs the conversion between optical and electrical signals - A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. - > The SAM twin phantom - A device holder - > Tissue simulating liquid - Dipole for evaluating the proper functioning of the system Component details are described in in the following sub-sections. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 9 of 40 Report Issued Date : Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 #### 5.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### 5.1.1 E-Field Probe Specification #### <EX3DV4 Probe> | Construction | Symmetrical design with triangular core Built-in shielding against static charges | | | |---------------|---|---------|-----------------| | | PEEK enclosure material (resistant to organic solvents, e.g., DGBE) | | | | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | | | Directivity | ± 0.3 dB in HSL (rotation around probe axis) | | 1 | | | ± 0.5 dB in tissue material (rotation normal to | | | | | probe axis) | | | | Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | | | | (noise: typically < 1 μW/g) | | | | Dimensions | Overall length: 330 mm (Tip: 20 mm) | | | | | Tip diameter: 2.5 mm (Body: 12 mm) | | | | | Typical distance from probe tip to dipole | | | | | centers: 1 mm | | | | | | Fig 5.2 | Photo of EX3DV4 | | | | | | #### 5.1.2 E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 10 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 ### 5.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Fig 5.3 Photo of DAE #### 5.3 Robot The SPEAG DASY system uses the high precision robots (DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - High precision (repeatability ±0.035 mm) - High reliability (industrial design) - Jerk-free straight movements - > Low ELF interference (the closed metallic construction shields against motor control fields) Fig 5.4 Photo of DASY5 #### 5.4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Fig 5.5 Photo of Server for DASY5 SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 11 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 ### 5.5 Phantom #### <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | My and the second secon | |-----------------|--|--| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | Fig 5.6 Photo of ELI4 Phantom | The
ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. #### 5.6 Device Holder ### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Fig 5.7 **Laptop Extension Kit** SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 12 of 40 Report Issued Date: Feb. 25, 2013 Report Version : Rev. 01 #### 5.7 <u>Data Storage and Evaluation</u> #### 5.7.1 Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### 5.7.2 Data Evaluation Device parameters : The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2} > - Conversion factor ConvF: - Diode compression point dcpi - Frequency - Crest factor cf Media parameters: - Conductivity σ > - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number Report Issued Date: Feb. 25, 2013 Report Version : Rev. 01 : 13 of 40 The formula for each channel can be given as : $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: E-field Probes : $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ H-field Probes : $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 14 of 40 Report Issued Date : Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 #### 5.8 Test Equipment List | Mary frost and | Noncoffee Sound | T (84 | Ordal North | Calib | ration | |----------------|---------------------------------|---------------|---------------|---------------|---------------| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Jul. 25, 2011 | Jul. 24, 2013 | | SPEAG | 5000MHz System Validation Kit | D5GHzV2 | 1006 | Dec. 11, 2012 | Dec. 10, 2013 | | SPEAG | Data Acquisition Electronics | DAE4 | 1210 | Dec. 05, 2012 | Dec. 04, 2013 | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 3857 | Jun. 20, 2012 | Jun. 19, 2013 | | SPEAG | ELI4 Phantom | QD OVA 001 BB | 1079 | NCR | NCR | | SPEAG | Phone Positioner | N/A | N/A | NCR | NCR | | Agilent | Wireless Communication Test Set | E5515C | MY48367160 | Oct. 25, 2012 | Oct. 24, 2013 | | Agilent | ENA Series Network Analyzer | E5071C | MY46111157 | Apr. 13, 2012 | Apr. 12, 2013 | | Agilent | Power Meter | E4416A | MY45101555 | Aug. 22, 2012 | Aug. 21, 2013 | | Agilent | Power Sensor | E9327A | MY44421198 | Aug. 22, 2012 | Aug. 21, 2013 | | Woken | Attenuator 1 | WK0602-XX | N/A | Not | te 4 | | PE | Attenuator 2 | PE7005-10 | N/A | No | te 4 | | PE | Attenuator 3 | PE7005- 3 | N/A | No | te 4 | | Agilent | Dual Directional Coupler | 778D | 50422 | Not | te 4 | | Agilent | Dielectric Probe Kit | 85070D | US01440205 | Not | te 5 | | AR | Power Amplifier | 5S1G4M2 | 0328767 | Not | te 6 | | R&S | Spectrum Analyzer | FSP30 | 101399 | Jun. 01, 2012 | May 31, 2013 | #### **Table 5.1 Test Equipment List** #### Note: - The calibration certificate of DASY can be referred to appendix C of this report. 1. - 2. Referring to KDB 865664 D01v01, the dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - 3. The justification data of dipole D2450V2, SN: 736 can be found in appendix C. The return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration. - 4. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 5. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent. - 6. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it - 7. Attenuator 1 insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FCC ID: HFS-CL4 FAX: 86-0512-5790-0958 : 15 of 40 Page Number Report Issued Date: Feb. 25, 2013 Report Version Report No.: FA2D1707 : Rev. 01 Report No. : FA2D1707 ### 6. <u>Tissue Simulating Liquids</u> For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2. Fig 6.1 Photo of Liquid Height for Body SAR The following table gives the recipes for tissue simulating liquid. | Frequency Water | | ater Sugar Cellulose | | Salt Preventol | | DGBE | Conductivity | Permittivity | | | | |-----------------|----------|----------------------|-----|----------------|-----|------|--------------|-------------------|--|--|--| | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (ε _r) | | | | | | For Body | | | | | | | | | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | | | Table 6.1 Recipes of Tissue Simulating Liquid Simulating Liquid for 5G, Manufactured by SPEAG | Ingredients | (% by weight) | | | | | |--------------------|---------------|--|--|--|--| | Water | 64~78% | | | | | | Mineral oil | 11~18% | | | | | | Emulsifiers | 9~15% | | | | | | Additives and Salt | 2~3% | | | | | The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer. The following table
shows the measuring results for simulating liquid. | Frequency
(MHz) | Liquid
Type | Liquid Temp.
(°C) | Conductivity
(σ) | Permittivity
(εr) | Conductivity
Target (σ) | Permittivity
Target (εr) | Delta (σ)
(%) | Delta (εr)
(%) | Limit (%) | Date | |--------------------|----------------|----------------------|---------------------|----------------------|----------------------------|-----------------------------|------------------|-------------------|-----------|---------------| | 2450 | Body | 21.2 | 2.002 | 53.464 | 1.95 | 52.7 | 2.67 | 1.45 | ±5 | Feb. 05, 2013 | | 5800 | Body | 21.3 | 6.004 | 48.915 | 6 | 48.2 | 0.07 | 1.48 | ±5 | Feb. 21, 2013 | **Table 6.2 Measuring Results for Simulating Liquid** SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 16 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 ### 7. SAR System Verification Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. #### 7.1 Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. #### 7.2 System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Fig 7.1 System Setup for System Evaluation SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 : 17 of 40 Page Number Report Issued Date: Feb. 25, 2013 Report Version : Rev. 01 - 1. Signal Generator - 2. Amplifier - 3. Directional Coupler - Power Meter - 5. Calibrated Dipole Fig 7.2 Photo of Dipole Setup ### 7.3 SAR System Verification Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Table 7.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Date | Frequency
(MHz) | Liquid
Type | Power fed onto
reference dipole
(mW) | Targeted SAR
(W/kg) | Measured
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation (%) | |---------------|--------------------|----------------|--|------------------------|---------------------------|-----------------------------|---------------| | Feb. 05, 2013 | 2450 | Body | 250 | 52.3 | 13.1 | 52.4 | 0.19 | | Feb. 21, 2013 | 5800 | Body | 100 | 71.7 | 7.58 | 75.8 | 5.72 | Table 7.1 Target and Measurement SAR after Normalized SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 18 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 ### 8. EUT Testing Position This DUT was tested in four different positions. They are Bottom of Laptop with phantom 0 cm gap, Bottom of Tablet with phantom 0 cm gap, Edge1 with phantom 0 cm gap, and Edge4 with phantom 0 cm gap. In these positions, the antenna of the DUT can be rotated through 0 degree or 180 degrees during the test. The illustrations for lap-touching position are as below. Fig 9.1 Illustration for Laptop PC on Lap-touching Position Fig 9.2 Illustration for Tablet PC on Lap-touching Position SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 19 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 ### 9. <u>Measurement Procedures</u> The measurement procedures are as follows: #### <Conducted power measurement> (a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band. Report No.: FA2D1707 - (b) Read the WWAN RF power level from the base station simulator. - (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band - (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power #### <SAR measurement> - (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel. - (b) Place the EUT in the positions as Appendix E demonstrates. - (c) Set scan area, grid size and other setting on the DASY software. - (d) Measure SAR results for the highest power channel on each testing position. - (e) Find out the largest SAR result on these testing positions of each band - (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 9.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number : 20 of 40 TEL: 86-0512-5790-0158 Report Issued Date : Feb. 25, 2013 FAX: 86-0512-5790-0958 Report Version : Rev. 01 FCC ID: HFS-CL4 9.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties. Report No.: FA2D1707 #### 9.3 Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01 quoted below. For any secondary peaks found in the area scan which are within 2 dB of the maximum peak and are not within this zoom scan, the zoom scan should be repeated | | | | ≤ 3 GHz | > 3 GHz | | |--|---|---|--|--|--| | Maximum distance fron
(geometric center of pro | | | 5 ± 1 mm | ½-δ·ln(2) ± 0.5 mm | | | Maximum probe angle in
normal at the measurem | | axis to phantom surface | 30° ± 1° | 20° ± 1° | | | | | | ≤ 2 GHz: ≤ 15 mm
2 − 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | | Maximum area scan spa | tial resoluti | on: Δx _{Area}
, Δy _{Ana} | When the x or y dimension of a
measurement plane orientation
measurement resolution must be
dimension of the test device was
point on the test device. | , is smaller than the above, the
be≤ the corresponding x or y | | | Maximum zoom scan sp | oatial resolu | tion: Δx_{Zoom} , Δy_{Zoom} | ≤ 2 GHz: ≤8 mm
2 - 3 GHz: ≤5 mm* | 3 – 4 GHz: ≤ 5 mm*
4 – 6 GHz: ≤ 4 mm* | | | | uniform | grid: ∆z _{Zoom} (n) | ≤ 5 mm | 3 – 4 GHz: ≤ 4 mm
4 – 5 GHz: ≤ 3 mm
5 – 6 GHz: ≤ 2 mm | | | Maximum zoom scan
spatial resolution,
normal to phantom
surface | Δz _{Zoom} (1): between 1 st two points closest to phantom surface | | ≤ 4 mm | 3 – 4 GHz: ≤ 3 mm
4 – 5 GHz: ≤ 2.5 mm
5 – 6 GHz: ≤ 2 mm | | | | grid | Δz _{Zoom} (n>1): between subsequent points | $\leq 1.5 \cdot \Delta z_{Z_{\text{com}}}(\text{n-1})$ | | | | Minimum zoom scan
volume | x, y, z | I | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | Note: ô is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number : 21 of 40 TEL: 86-0512-5790-0158 Report Issued Date: Feb. 25, 2013 FAX: 86-0512-5790-0958 Report Version : Rev. 01 FCC ID: HFS-CL4 When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### 9.4 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. #### 9.5 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. ### 9.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 22 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 10. Conducted RF Output Power (Unit: dBm) #### <WLAN 2.4GHz Conducted Power> | | | F | | Average po | ower (dBm) | | | | |---------|---------|-----------|-----------------------|------------|------------|-------|--|--| | Mode | Channel | Frequency | (MHz) Data Rate (bps) | | | | | | | | | (1411 12) | 1M | 2M | 5.5M | 11M | | | | | CH 01 | 2412 | 15.66 | 15.46 | 15.26 | 14.96 | | | | 802.11b | CH 06 | 2437 | <mark>16.96</mark> | 15.96 | 16.42 | 16.38 | | | | | CH 11 | 2462 | 15.92 | 16.06 | 16.25 | 16.18 | | | | | Channel | | | | | | | | | | | | | | _ | | | A | verage po | ower (dBn | 1) | | | |---------|---------|--------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|--|---|--|--|---|-----------|-----------|----|--|--| | Mode | | Frequency
(MHz) | Data Rate (bps) | (101112) | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | | | | | | | | | | | | | | CH 01 | 2412 | 9.62 | 9.32 | 9.18 | 9.02 | 8.95 | 8.86 | 8.92 | 9.21 | | | | | | | | | | | | | | | 802.11g | CH 06 | 2437 | 10.65 | 10.68 | 10.65 | 10.32 | 10.45 | 10.86 | 10.98 | 10.89 | | | | | | | | | | | | | | | | CH 11 | 2462 | 11.02 | 10.85 | 10.82 | 10.78 | 10.68 | 10.52 | 10.45 | 10.28 | | | | | | | | | | | | | | | | Channel | | | | | | _ | | | Α | verage po | ower (dBm | 1) | | | |-----------------|---------|--------------------|-----------|-------|-------|-------|-------|-------|-------|--------------|-----------|-----------|----|--|--| | Mode | | Frequency
(MHz) | MCS Index | | | | | | | | | | | | | | | | (WITIZ) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | | | | | CH 01 | 2412 | 10.04 | 10.36 | 10.06 | 10.02 | 10.05 | 10.08 | 10.09 | 10.12 | | | | | | | 802.11n
HT20 | CH 06 | 2437 | 11.24 | 11.28 | 11.26 | 11.22 | 11.38 | 11.45 | 11.32 | 11.29 | | | | | | | H120 | CH 11 | 2462 | 11.34 | 11.32 | 11.28 | 11.16 | 11.35 | 11.42 | 11.45 | 11.47 | | | | | | | | | _ | | | A | verage po | ower (dBm | 1) | | | |-----------------|---------|--------------------|-------|-------|-------|-----------|-----------|-------|-------|--------------------| | Mode | Channel | Frequency
(MHz) | | | | MCS | Index | | | | | | | (1411 12) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | 000.44 | CH 03 | 2422 | 9.11 | 9.31 | 9.24 | 9.19 | 9.21 | 9.12 | 9.28 | 9.13 | | 802.11n
HT40 | CH 06 | 2437 | 10.41 | 9.98 | 9.78 | 10.21 | 9.68 | 9.56 | 10.24 | 10.17 | | 11140 | CH 09 | 2452 | 10.98 | 11.04 | 11.03 | 10.96 | 10.62 | 10.12 | 10.78 | <mark>11.12</mark> | #### Note: - Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate - 3. Per KDB 248227 D01 v01r02, 11g, 11n-HT20 and 11n-HT40 output power is less than 1/4dB higher than 11b mode, thus the SAR can be excluded. #### <Bluetooth Conducted Power> | | | _ | | | | Averag | je Power | (dBm) | | | | |-----------|---------|-----------|-------|-------|-------------------|--------|-----------|-------|-------|-------|-------| | Mode | Channel | Frequency | | | | [| Data Rate | е | | | | | | | (MHz) | DH1 | DH3 | DH5 | 2DH1 | 2DH3 | 2DH5 | 3DH1 | 3DH3 | 3DH5 | | | CH 00 | 2402 | -1.32 | -1.27 | -0.87 | -4.87 | -5.03 | -4.89 | -4.56 | -4.73 | -4.61 | | Bluetooth | CH 39 | 2441 | -0.28 | 0.72 | 1.00 | -3.84 | -3.93 | -4.05 | -3.63 | -3.92 | -3.79 | | | CH 78 | 2480 | 0.43 | 0.77 | <mark>1.16</mark> | -3.34 | -3.65 | -3.70 | -3.67 | -3.84 | -3.85 | SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 23 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 #### <WLAN 5GHz Conducted Power> | | | | | | A | verage Po | ower (dBn | 1) | | | |-------------------|---------|--------------------|--------------------|-------|-------|-----------|-----------|-------|-------|-------| | Mode | Channel | Frequency
(MHz) | | | | Data Ra | ite (bps) | | | | | | | (141112) | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | CH 036 | 5180 | <mark>6.38</mark> | 6.32 | 6.32 | 6.12 | 6.25 | 6.13 | 6.22 | 6.23 | | | CH 040 | 5200 | 6.10 | 6.01 | 6.05 | 6.08 | 6.03 | 5.92 | 6.05 | 5.98 | | | CH 044 | 5220 | 6.18 | 6.01 | 5.96 | 6.08 | 6.02 | 5.86 | 6.03 | 5.82 | | 000 44 - | CH 048 | 5240 | 6.21 | 6.13 | 6.12 | 6.11 | 6.13 | 6.12 | 6.18 | 6.13 | | 802.11a
(5GHz) | CH 149 | 5745 | 13.49 | 13.32 | 13.23 | 13.44 | 13.32 | 13.30 | 13.46 | 13.35 | | (30112) | CH 153 | 5765 | 14.13 | 13.85 | 13.78 | 14.08 | 13.85 | 13.82 | 13.92 | 13.84 | | | CH 157 | 5785 | 14.40 | 14.34 | 14.28 | 14.32 | 14.35 | 14.28 | 14.12 | 14.37 | | | CH 161 | 5805 | 14.43 | 14.36 | 14.38 | 14.12 | 14.22 | 14.39 | 14.16 | 14.28 | | | CH 165 | 5825 | <mark>14.58</mark> | 14.55 | 14.45 | 14.38 | 14.45 | 14.37 | 14.21 | 14.54 | | | | 5 | | | Α | verage Po | ower (dBn | 1) | | | |------------------------|---------|--------------------|-------------------|-------|-------|-----------|-----------|-------|-------|-------| | Mode | Channel | Frequency
(MHz) | | | | MCS | Index | | | | | | | (1411 12) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | CH 036 | 5180 | 6.80 | 6.69 | 6.67 | 6.42 | 6.52 | 6.58 | 6.48 | 6.38 | | | CH 040 | 5200 | 7.18 | 7.13 | 7.15 | 7.08 | 6.98 | 7.02 | 6.97 | 6.89 | | | CH 044 | 5220 | 7.13 | 7.05 | 6.89 | 6.92 | 7.02 | 6.87 | 6.78 | 7.02 | | 000 44 n LITOO | CH 048 | 5240 | <mark>7.36</mark> | 7.28 | 7.31 | 7.29 | 7.18 | 7.31 | 7.22 | 7.11 | | 802.11n-HT20
(5GHz) | CH 149 | 5745 | 12.79 | 12.66 | 12.7 | 12.76 | 12.68 | 12.59 | 12.71 | 12.7 | | (30112) | CH 153 | 5765 | 13.63 | 13.53 | 13.61 | 13.56 | 13.44 | 13.38 | 13.31 | 13.4 | | | CH 157 | 5785 | 14.21 | 14.18 | 14.05 | 14.17 | 14.1 | 13.96 | 14.09 | 14.08 | | | CH 161 | 5805 | 14.32 | 14.3 | 14.26 | 14.28 | 14.16 | 14.01 | 14.1 | 14.29 | | | CH 165 | 5825 | 14.43 | 14.39 | 14.38 | 14.36 | 14.23 | 14.03 | 14.15 | 14.21 | | |
 | | | Α | verage Po | ower (dBm | 1) | | | |--------------|-------------|--------------------|-------------------|-------|-------|-----------|-----------|-------|-------|-------| | Mode | Channel | Frequency
(MHz) | | | | MCS | Index | | | | | | | (1411 12) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | CH 038 | 5190 | <mark>6.96</mark> | 6.95 | 6.88 | 6.82 | 6.92 | 6.61 | 6.59 | 6.57 | | | CH 040 5220 | | 6.93 | 6.91 | 6.87 | 6.84 | 6.75 | 6.68 | 6.85 | 6.87 | | 802.11n-HT40 | CH 044 | 5220 | 6.89 | 6.72 | 6.65 | 6.86 | 6.81 | 6.86 | 6.79 | 6.82 | | (5GHz) | CH 046 | 5230 | 6.91 | 6.78 | 6.82 | 6.75 | 6.68 | 6.57 | 6.85 | 6.90 | | | CH 151 | 5755 | 13.95 | 13.85 | 13.71 | 13.78 | 13.8 | 13.83 | 13.75 | 13.82 | | | CH 159 | 5795 | 14.38 | 14.29 | 14.22 | 14.32 | 14.33 | 14.2 | 14.25 | 14.3 | #### Note: - Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR 1. - 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate. - 3. Per KDB 248227 D01 v01r02, 11n-HT20 and 11n-HT40 output power is less than 1/4dB higher than 802.11b mode, thus the SAR can be excluded. SPORTON INTERNATIONAL (KUNSHAN) INC. FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 TEL: 86-0512-5790-0158 Page Number : 24 of 40 Report Issued Date: Feb. 25, 2013 Report No. : FA2D1707 Report Version : Rev. 01 Report No.: FA2D1707 # 11. Exposure Positions Consideration <Tablet PC Antenna position 0° > TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 25 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 ### Report No.: FA2D1707 #### <Tablet PC Antenna position 180° > Note: The display screen can be fold onto the keypad and the device is in tablet mode TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 26 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 # Report No. : FA2D1707 ### <Laptop position 0° > TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 : 27 of 40 Page Number Report Issued Date: Feb. 25, 2013 Report Version : Rev. 01 | Antennas | Wireless Interface | |-----------------------------|--------------------------| | WLAN Antenna (Tx / Rx) | WLAN 2.4GHz
WLAN 5GHz | | Bluetooth Antenna (Tx / Rx) | Bluetooth | SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 28 of 40 Report Issued Date: Feb. 25, 2013 Report Version : Rev. 01 | | < | Antenna positio | on 0° > | | | |---------------------|----------------------------------|-----------------|---------------------|---------------------|-----------| | Exposure | Wireless Interface | WLAN 2.4GHz | WLAN 5GHz
Band 1 | WLAN 5GHz
Band 4 | Bluetooth | | Position | Tune-up Maximum power (dBm) | 17.5 | 7.5 | 15 | 1.5 | | | Tune-up Maximum rated power (mW) | 56.23 | 5.62 | 31.62 | 1.41 | | 5 (| Antenna to user (mm) | | 5 | | 5 | | Bottom of
Laptop | SAR exclusion threshold (mW) | 10 | 7 | 6 | 10 | | Laptop | SAR testing required? | YES | NO | YES | NO | | 5 | Antenna to user (mm) | | 5 | | 5 | | Bottom of
Tablet | SAR exclusion threshold (mW) | 10 | 7 | 6 | 10 | | Tablet | SAR testing required? | YES | NO | YES | NO | | | Antenna to user (mm) | | 5 | | 5 | | Edge 1 | SAR exclusion threshold (mW) | 10 | 7 | 6 | 10 | | | SAR testing required? | YES | NO | YES | NO | | | Antenna to user (mm) | | 220 | | 5 | | Edge 2 | SAR exclusion threshold (mW) | 1796 | 1766 | 1762 | 10 | | | SAR testing required? | NO | NO | NO | NO | | | Antenna to user (mm) | | 160 | | 160 | | Edge 3 | SAR exclusion threshold (mW) | 1196 | 1166 | 1162 | 1195 | | | SAR testing required? | NO | NO | NO | NO | | | Antenna to user (mm) | | 5 | | 220 | | Edge 4 | SAR exclusion threshold (mW) | 10 | 7 | 6 | 1795 | | | SAR testing required? | YES | NO | YES | NO | TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 29 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 | | <. | Antenna position | 180° > | | | |---------------------|----------------------------------|------------------|---------------------|---------------------|-----------| | Exposure | Wireless Interface | WLAN 2.4GHz | WLAN 5GHz
Band 1 | WLAN 5GHz
Band 4 | Bluetooth | | Position | Tune-up Maximum power (dBm) | 17.5 | 7.5 | 15 | 1.5 | | | Tune-up Maximum rated power (mW) | 56.23 | 5.62 | 31.62 | 1.41 | | D. 11 6 | Antenna to user (mm) | | 5 | | 5 | | Bottom of
Laptop | SAR exclusion threshold (mW) | 10 | 7 | 6 | 10 | | Laptop | SAR testing required? | YES | NO | YES | NO | | D 11 6 | Antenna to user (mm) | | 5 | | 5 | | Bottom of
Tablet | SAR exclusion threshold (mW) | 10 | 7 | 6 | 10 | | Tablet | SAR testing required? | YES | NO | YES | NO | | | Antenna to user (mm) | | 5 | | 5 | | Edge 1 | SAR exclusion threshold (mW) | 10 | 7 | 6 | 10 | | | SAR testing required? | YES | NO | YES | NO | | | Antenna to user (mm) | | 220 | | 5 | | Edge 2 | SAR exclusion threshold (mW) | 1796 | 1766 | 1762 | 10 | | | SAR testing required? | NO | NO | NO | NO | | | Antenna to user (mm) | | 210 | | 210 | | Edge 3 | SAR exclusion threshold (mW) | 1696 | 1666 | 1662 | 1695 | | | SAR testing required? | NO | NO | NO | NO | | | Antenna to user (mm) | · | 5 | | 220 | | Edge 4 | SAR exclusion threshold (mW) | 10 | 7 | 6 | 1795 | | | SAR testing required? | YES | NO | YES | NO | #### Note: - 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 2. Per KDB 447498 D01v05, for larger devices, the *test separation distance* is determined by the closest separation between the antenna and the user. - 3. Per KDB 447498 D01v05, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold - 4. Per KDB 447498 D01v05, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz - Power and distance are rounded to the nearest mW and mm before calculation - The result is rounded to one decimal place for comparison - 5. Per KDB 447498 D01v05, at 100 MHz to 6 GHz and for *test separation distances* > 50 mm, the SAR test exclusion threshold is determined according to the following - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 30 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 ### 12. SAR Test Results #### Note: - Per KDB 447498 D01v05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor - Per KDB 447498 D01v05, for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing is not necessary. - 3. Per KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg #### 12.1 Test Records for Body SAR Test #### <WLAN 2.4GHz SAR> | Plot
No. | Band | Mode | DUT
Mode | Antenna
Position | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling Factor | Power
Drift
(dB) | Measured
SAR _{1g}
(W/kg) | Reported
SAR _{1g}
(W/kg) | |-------------|-------------|---------|-------------|---------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|----------------|------------------------|---|---| | #01 | WLAN 2.4GHz | 802.11b | Laptop PC | 0° | Bottom of Laptop | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.04 | 0.014 | 0.016 | | #02 | WLAN 2.4GHz | 802.11b | Laptop PC | 180° | Bottom of Laptop | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.06 | 0.049 | 0.055 | | #03 | WLAN 2.4GHz | 802.11b | Tablet PC | 0° | Bottom of Tablet | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.07 | 0.027 | 0.031 | | #04 | WLAN 2.4GHz | 802.11b | Tablet PC | 180° | Bottom of Tablet | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.05 | 0.063 | 0.071 | | #05 | WLAN 2.4GHz | 802.11b | Tablet PC | 0° | Edge1 | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.04 | 0.007 | 0.008 | | #06 | WLAN 2.4GHz | 802.11b | Tablet PC | 180° | Edge1 | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.03 | 0.035 | 0.040 | | #11 | WLAN 2.4GHz | 802.11b | Tablet PC | 0° | Edge4 | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | -0.09 | 0.381 | 0.431 | | #12 | WLAN 2.4GHz | 802.11b | Tablet PC | 180° | Edge4 | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.01 | 0.652 | 0.738 | ### <WLAN 5GHz SAR> | Plot
No. | Band | Mode | DUT
Mode | Antenna
Position | Test
Position | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR _{1q}
(W/kg) | Reported
SAR _{1g}
(W/kg) | |-------------|-----------|---------|-------------|---------------------|------------------|-------------|-----|----------------|---------------------------|---------------------------|-------------------|------------------------|---|---| | #13 |
WLAN 5GHz | 802.11a | Laptop PC | 0° | Bottom of Laptop | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.001 | 0.00937 | 0.010 | | #14 | WLAN 5GHz | 802.11a | Laptop PC | 180° | Bottom of Laptop | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.02 | 0.034 | 0.037 | | #15 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Bottom of Tablet | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.03 | 0.061 | 0.067 | | #16 | WLAN 5GHz | 802.11a | Tablet PC | 180° | Bottom of Tablet | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.05 | 0.120 | 0.132 | | #17 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge1 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.07 | 0.017 | 0.019 | | #18 | WLAN 5GHz | 802.11a | Tablet PC | 180° | Edge1 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.01 | 0.118 | 0.130 | | #19 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge4 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | -0.02 | 1.240 | 1.366 | | #20 | WLAN 5GHz | 802.11a | Tablet PC | 180° | Edge4 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | 0.07 | 0.896 | 0.987 | | #21 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge4 | 0 | 149 | 5745 | 14.58 | 15 | 1.102 | -0.05 | 0.854 | 0.941 | | #22 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge4 | 0 | 157 | 5785 | 14.58 | 15 | 1.102 | 0.09 | 1.160 | 1.278 | | #23 | WLAN 5GHz | 802.11a | Tablet PC | 180° | Edge4 | 0 | 149 | 5745 | 14.58 | 15 | 1.102 | 0.02 | 0.637 | 0.702 | | #24 | WLAN 5GHz | 802.11a | Tablet PC | 180° | Edge4 | 0 | 157 | 5785 | 14.58 | 15 | 1.102 | 0.01 | 0.854 | 0.941 | SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 31 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 ### 12.2 Repeated SAR Measurement | Plot
No. | Band | Mode | - | Antenna
Position | Test
Position | Gap
(cm) | ı (.n | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR _{1g}
(W/kg) | Ratio | Reported
SAR _{1g}
(W/kg) | |-------------|-----------|---------|-----------|---------------------|------------------|-------------|-------|----------------|---------------------------|---------------------------|-------------------|------------------------|---|-------|---| | #19 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge4 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | -0.02 | 1.240 | 1 | 1.366 | | #25 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge4 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | -0.09 | 1.220 | 1.020 | 1.344 | Report No.: FA2D1707 #### Note: - 1. Per KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg - 2. Per KDB 865664 D01v01, if the deviation among the repeated measurement is ≤20% and the measured SAR <1.45W/kg, only one repeated measurement is required. - 3. The deviation is the difference in percentage between original and repeated *measured SAR*. - 4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant. ### 12.3 Highest SAR Plot | Plot
No. | Band | Mode | DUT
Mode | Antenna
Position | | Gap
(cm) | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power
Drift
(dB) | Measured
SAR _{1g}
(W/kg) | Reported
SAR _{1q}
(W/kg) | |-------------|-------------|---------|-------------|---------------------|-------|-------------|-----|----------------|---------------------------|---------------------------|-------------------|------------------------|---|---| | #12 | WLAN 2.4GHz | 802.11b | Tablet PC | 180° | Edge4 | 0 | 6 | 2437 | 16.96 | 17.5 | 1.132 | 0.01 | 0.652 | 0.738 | | #19 | WLAN 5GHz | 802.11a | Tablet PC | 0° | Edge4 | 0 | 165 | 5825 | 14.58 | 15 | 1.102 | -0.02 | 1.240 | 1.366 | SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number : 32 of 40 TEL: 86-0512-5790-0158 Report Issued Date : Feb. 25, 2013 FAX: 86-0512-5790-0958 Report Version : Rev. 01 FCC ID: HFS-CL4 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013-2-5 #12 802.11b_Edge4_0cm_Tablet PC_Ant Degree 180_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL_2450_130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\epsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.3 °C; Liquid Temperature : 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) Ch6/Area Scan (81x281x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.129 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.558 W/kg SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.274 mW/gMaximum value of SAR (measured) = 1.063 mW/g 0 dB = 1.060 mW/g SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 33 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2013-2-21 #### #19 802.11a Edge4_0cm Tablet PC Ant Degree 0 165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) # Ch165/Area Scan (81x281x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.418 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.522 W/kg SAR(1 g) = 1.24 mW/g; SAR(10 g) = 0.296 mW/gMaximum value of SAR (measured) = 3.097 mW/g SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 34 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 #### 12.4 Simultaneous Multi-band Transmission Analysis | No. | Applicable Simultaneous Transmission Combination | |-----|--| | 1. | WLAN + Bluetooth | Report No.: FA2D1707 #### Note: - 1. EUT will choose either WLAN 2.4GHz or WLAN 5GHz according to the network signal condition; therefore, they will not transmit simultaneously. - 2. The reported SAR summation is calculated based on the same configuration and test position. - 3. For simultaneous transmission analysis, Bluetooth and WLAN 5GHz Band 1 SAR are estimated per KDB 447498 D01v05 based on the formula below. - (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√ f(GHz)/x]W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. - 2) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm. | Bluetooth | | | | | | | | | |----------------------------------|------------|------------------|------------|------------|--|--|--|--| | Exposure Position Bottom of Lapt | | Bottom of Tablet | Edge 1 | Edge 4 | | | | | | Test separation | 0 mm | 0 mm | 0 mm | 0 mm | | | | | | Antenna to user distance | 5 mm | 5 mm | 5 mm | 220 mm | | | | | | Estimated SAR (W/kg) | 0.059 W/kg | 0.059 W/kg | 0.059 W/kg | 0.001 W/kg | | | | | | WLAN 5GHz Band 1 | | | | | | | | | |--------------------------|------------------|-----------------------------------|------------|------------|--|--|--|--| | Exposure Position | Bottom of Laptop | Bottom of Laptop Bottom of Tablet | | Edge 4 | | | | | | Test separation | 0 mm | 0 mm | 0 mm | 0 mm | | | | | | Antenna to user distance | 5 mm | 5 mm | 5 mm | 5 mm | | | | | | Estimated SAR (W/kg) | 0.343 W/kg | 0.343 W/kg | 0.343 W/kg | 0.343 W/kg | | | | | - 4. Per KDB 447498 D01v05, simultaneous transmission SAR is compliant if, - (i) Scalar SAR summation < 1.6W/kg. - (ii) SPLSR = (SAR1 + SAR2)1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan. - If SPLSR \leq 0.04, simultaneously transmission SAR measurement is not necessary. (iii) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg. SPORTON INTERNATIONAL (KUNSHAN) INC. Page Number : 35 of 40 TEL: 86-0512-5790-0158 Report Issued Date : Feb. 25, 2013 FAX: 86-0512-5790-0958 Report Version : Rev. 01 FCC ID: HFS-CL4 | | WLAN | | | Bluetooth | WLAN | | | |------------------|------------------|------------|----------------------------|--------------------------------------|------|-----------------|---------| | Position | WWAN Band | Plot
No | Max.
WWAN SAR
(W/kg) | Estimated
Bluetooth SAR
(W/kg) | | SPLSR
≤ 0.04 | Case No | | | WLAN 2.4GHz | #02 | 0.055 | 0.059 | 0.11 | - | - | | Bottom of Laptop | WLAN 5GHz Band 1 | - | 0.343 | 0.059 | 0.40 | - | - | | | WLAN 5GHz Band 4 | #14 | 0.037 | 0.059 | 0.10 | - | - | | | WLAN 2.4GHz | #03 | 0.071 | 0.059 | 0.13 | - | - | | Bottom of Tablet | WLAN 5GHz Band 1 | - | 0.343 | 0.059 | 0.40 | - | - | | | WLAN 5GHz Band 4 | #16 | 0.132 | 0.059 | 0.19 | - | - | | | WLAN 2.4GHz | #06 | 0.040 | 0.059 | 0.10 | - | - | | Edge 1 |
WLAN 5GHz Band 1 | - | 0.343 | 0.059 | 0.40 | - | - | | | WLAN 5GHz Band 4 | #18 | 0.130 | 0.059 | 0.19 | - | - | | | WLAN 2.4GHz | #12 | 0.738 | 0.001 | 0.74 | - | - | | Edge 4 | WLAN 5GHz Band 1 | - | 0.343 | 0.001 | 0.34 | - | - | | | WLAN 5GHz Band 4 | #19 | 1.366 | 0.001 | 1.37 | - | - | Test Engineer : Fulu Hu TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 36 of 40 Report Issued Date : Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 # 13. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 12.1 | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | - (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity - (b) κ is the coverage factor #### **Table 13.1 Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 37 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 | CC SAR Test Report | Report No. : FA2D1707 | |--------------------|-----------------------| |--------------------|-----------------------| | | Uncertainty | Probability | | Ci | Ci | Standard | Standard | |-------------------------------|-------------|--------------|---------|----------|----------|-------------|-------------| | Error Description | Value | Distribution | Divisor | (1g) | (10g) | Uncertainty | Uncertainty | | | (±%) | | | | | (1g) | (10g) | | Measurement System | | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | 1 | ± 6.0 % | ± 6.0 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | 1 | ± 0.2 % | ± 0.2 % | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | ± 11.0 % | ± 10.8 % | | | Coverage Factor for 95 % | | | | K=2 | | | | | Expanded Uncertainty | | | | ± 22.0 % | ± 21.5 % | | | Table 13.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz from IEEE Std 1528™-2003 SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 38 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 | CC SAR Test Report | Report No. : FA2D1707 | |--------------------|-----------------------| |--------------------|-----------------------| | | Uncertainty | Probability | | Ci | Ci | Standard | Standard | |-------------------------------|-------------|--------------|---------|----------|----------|-------------|-------------| | Error Description | Value | Distribution | Divisor | (1g) | (10g) | Uncertainty | Uncertainty | | | (±%) | | | | | (1g) | (10g) | | Measurement System | | | | | | | | | Probe Calibration | 6.55 | Normal | 1 | 1 | 1 | ± 6.55 % | ± 6.55 % | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | 0.7 | ± 1.9 % | ± 1.9 % | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | 0.7 | ± 3.9 % | ± 3.9 % | | Boundary Effects | 2.0 | Rectangular | √3 | 1 | 1 | ± 1.2 % | ± 1.2 % | | Linearity | 4.7 | Rectangular | √3 | 1 | 1 | ± 2.7 % | ± 2.7 % | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | 1 | ± 0.6 % | ± 0.6 % | | Readout Electronics | 0.3 | Normal | 1 | 1 | 1 | ± 0.3 % | ± 0.3 % | | Response Time | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Integration Time | 2.6 | Rectangular | √3 | 1 | 1 | ± 1.5 % | ± 1.5 % | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | 1 | ± 1.7 % | ± 1.7 % | | Probe Positioner | 0.8 | Rectangular | √3 | 1 | 1 | ± 0.5 % | ± 0.5 % | | Probe Positioning | 9.9 | Rectangular | √3 | 1 | 1 | ± 5.7 % | ± 5.7 % | | Max. SAR Eval. | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Test Sample Related | | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Device Holder | 3.6 | Normal | 1 | 1 | 1 | ± 3.6 % | ± 3.6 % | | Power Drift | 5.0 | Rectangular | √3 | 1 | 1 | ± 2.9 % | ± 2.9 % | | Phantom and Setup | | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | 1 | ± 2.3 % | ± 2.3 % | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | 0.43 | ± 1.8 % | ± 1.2 % | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | 0.43 | ± 1.6 % | ± 1.1 % | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | 0.49 | ± 1.7 % | ± 1.4 % | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | 0.49 | ± 1.5 % | ± 1.2 % | | Combined Standard Uncertainty | | | | | ± 12.8 % | ± 12.6 % | | | Coverage Factor for 95 % | | | | K=2 | | | | | Expanded Uncertainty | | | | ± 25.6 % | ± 25.2 % | | | Table 13.3 Uncertainty Budget of DASY for frequency range 3 GHz to 6 GHz from IEEE Std 1528™-2003 SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : 39 of 40 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 # FCC SAR Test Report # 14. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001 - [5] SPEAG DASY
System Handbook - [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [7] FCC KDB 447498 D01 v05, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", October 2012 - [8] FCC KDB 648474 D04 v01, "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas", October 2012 - [9] FCC KDB 616217 D04 v01, "SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers", October 2012. - [10] FCC KDB 865664 D01 v01, "SAR Measurement Requirements for 100MHz to 6GHz", October 2012 SPORTON INTERNATIONAL (KUNSHAN) INC. FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 TEL: 86-0512-5790-0158 Page Number : 40 of 40 Report Issued Date : Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 #### Appendix A. Plots of System Performance Check The plots are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 : A1 of A1 Page Number Report Issued Date: Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 #### System Check Body 2450MHz 130205 **DUT: D2450V2 - SN:736** Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2450 MHz; $\sigma = 2.002$ mho/m; $\varepsilon_r =$ 53.464; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Pin=250mW/Area Scan (71x71x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 20.423 mW/g Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 85.861 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 27.247 W/kg SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.05 mW/g Maximum value of SAR (measured) = 20.005 mW/g #### System Check Body 5800MHz 130221 **DUT: D5GHzV2 - SN: 1006** Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: MSL 5000_130221 Medium parameters used: f = 5800 MHz; $\sigma = 6.004$ mho/m; $\varepsilon_r =$ 48.915; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.5 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Pin=100mW/Area Scan (71x71x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 18.851 mW/g Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 45.564 V/m; Power Drift = 0.10 dB Peak SAR (extrapolated) = 31.298 W/kg SAR(1 g) = 7.58 mW/g; SAR(10 g) = 2.09 mW/g Maximum value of SAR (measured) = 19.012 mW/g # Appendix B. Plots of SAR Measurement The plots are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : B1 of B1 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707 ## #01 WLAN 2.4GHz 802.11b Bottom of Laptop 0cm Laptop PC Ant Degree 0 6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch6/Area Scan (231x251x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.016 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.446 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.024 W/kg SAR(1 g) = 0.014 mW/g; SAR(10 g) = 0.011 mW/g Maximum value of SAR (measured) = 0.017 mW/g Ch6/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.446 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.014 W/kg SAR(1 g) = 0.010 mW/g; SAR(10 g) = 0.00752 mW/g Maximum value of SAR (measured) = 0.013 mW/g # #02 WLAN 2.4GHz_802.11b_Bottom of Laptop_0cm_Laptop PC_Ant Degree 180_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch6/Area Scan (261x251x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.072 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.634 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.090 W/kg SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.029 mW/g Maximum value of SAR (measured) = 0.068 mW/g # #03 WLAN 2.4GHz_802.11b_Bottom of Tablet _0cm_Tablet PC_Ant Degree 0_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch6/Area Scan (231x251x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.033 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.081 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.050 W/kg SAR(1 g) = 0.027 mW/g; SAR(10 g) = 0.022 mW/g Maximum value of SAR (measured) = 0.034 mW/g **Ch6/Zoom Scan (7x7x7)/Cube 1:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.081 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.030 W/kg SAR(1 g) = 0.021 mW/g; SAR(10 g) = 0.018 mW/g Maximum value of SAR (measured) = 0.028 mW/g #### #04 WLAN 2.4GHz 802.11b Bottom of Tablet Ocm Tablet PC Ant Degree 180 6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch6/Area Scan (261x251x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.079 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 2.834 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.116 W/kg SAR(1 g) = 0.063 mW/g; SAR(10 g) = 0.042 mW/g Maximum value of SAR (measured) = 0.084 mW/g # #05 WLAN 2.4GHz_802.11b_Edge1_0cm_Tablet PC_Ant Degree 0_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch6/Area Scan (81x261x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.00944 mW/g Ch6/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.788 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.013 W/kg SAR(1 g) = 0.007 mW/g; SAR(10 g) = 0.00584 mW/g Maximum value of SAR (measured) = 0.00992 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.788 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.016 W/kg SAR(1 g) = 0.00621 mW/g; SAR(10 g) = 0.0053 mW/g Maximum value of SAR (measured) = 0.00916 mW/g # #06 WLAN 2.4GHz_802.11b_Edge1_0cm_Tablet PC_Ant Degree 180_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL_2450_130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X
Version 14.4.5 (3634) Ch6/Area Scan (81x261x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.040 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.748 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.068 W/kg SAR(1 g) = 0.035 mW/g; SAR(10 g) = 0.019 mW/g Maximum value of SAR (measured) = 0.049 mW/g # #11 WLAN 2.4GHz_802.11b_Edge4_0cm_Tablet PC_Ant Degree 0_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) Ch6/Area Scan (81x281x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.551 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0.281 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.916 W/kg SAR(1 g) = 0.381 mW/g; SAR(10 g) = 0.152 mW/g Maximum value of SAR (measured) = 0.635 mW/g # #12 WLAN 2.4GHz_802.11b_Edge4_0cm_Tablet PC_Ant Degree 180_6 **DUT: 2D1707** Communication System: WIFI; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: MSL 2450 130205 Medium parameters used: f = 2437 MHz; $\sigma = 1.976$ mho/m; $\varepsilon_r =$ 53.488; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.3 °C; Liquid Temperature: 21.2 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(6.94, 6.94, 6.94); Calibrated: 2012-6-20 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch6/Area Scan (81x281x1):** Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 1.129 mW/g Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 1.558 W/kg SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.274 mW/g Maximum value of SAR (measured) = 1.063 mW/g ## #13 WLAN 5GHz 802.11a Bottom of Laptop 0cm Laptop PC Ant Degree 0 165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) Ch165/Area Scan (281x321x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.022 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.001 dB Peak SAR (extrapolated) = 0.152 W/kg SAR(1 g) = 0.00937 mW/g; SAR(10 g) = 0.00287 mW/g Maximum value of SAR (measured) = 0.030 mW/g #### #14 WLAN 5GHz 802.11a Bottom of Laptop 0cm Laptop PC Ant Degree 180 165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) Ch165/Area Scan (301x321x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.130 mW/g Ch165/Zoom Scan (8x8x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.240 W/kg SAR(1 g) = 0.034 mW/g; SAR(10 g) = 0.013 mW/g Maximum value of SAR (measured) = 0.109 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.199 W/kg SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.013 mW/g Maximum value of SAR (measured) = 0.090 mW/g # #15 WLAN 5GHz_802.11a_Bottom of Tablet _0cm_Tablet PC_Ant Degree 0_165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C #### DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) Ch165/Area Scan (281x321x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.268 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.251 W/kg SAR(1 g) = 0.061 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.164 mW/g # #16 WLAN 5GHz_802.11a_Bottom of Tablet _0cm_Tablet PC_Ant Degree 180_165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) Ch165/Area Scan (281x321x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.272 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.400 W/kg SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.050 mW/g Maximum value of SAR (measured) = 0.263 mW/g # #17 WLAN 5GHz_802.11a_Edge1_0cm_Tablet PC_Ant Degree 0_165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch165/Area Scan (81x321x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.036 mW/g **Ch165/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.243 W/kg SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.00671 mW/gMaximum value of SAR (measured) = 0.056 mW/g Ch165/Zoom Scan (8x8x7)/Cube 1: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.128 W/kg SAR(1 g) = 0.00617 mW/g; SAR(10 g) = 0.000832 mW/g Maximum value of SAR (measured) = 0.023 mW/g # #18 WLAN 5GHz_802.11a_Edge1_0cm_Tablet PC_Ant Degree 180_165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch165/Area Scan (81x321x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 0.251 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.478 W/kg SAR(1 g) = 0.118 mW/g; SAR(10 g) = 0.045 mW/g Maximum value of SAR (measured) = 0.306 mW/g # #19 WLAN 5GHz_802.11a_Edge4_0cm_Tablet PC_Ant Degree 0_165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch165/Area Scan (81x281x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 3.418 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,
dz=1.4mm Reference Value = 0 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 5.522 W/kg SAR(1 g) = 1.240 mW/g; SAR(10 g) = 0.296 mW/g Maximum value of SAR (measured) = 3.097 mW/g ## #25 WLAN 5GHz 802.11a Edge4 0cm Tablet PC Ant Degree 0 165 Repeat SAR **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch165/Area Scan (41x141x1):** Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 3.961 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.489 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 5.119 W/kg SAR(1 g) = 1.22 mW/g; SAR(10 g) = 0.293 mW/g Maximum value of SAR (measured) = 3.082 mW/g ## #20 WLAN 5GHz 802.11a Edge4 0cm Tablet PC Ant Degree 180 165 **DUT: 2D1707** Communication System: WIFI; Frequency: 5825 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5825 MHz; $\sigma = 6.065$ mho/m; $\varepsilon_r =$ 48.834; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature : 23.2 °C; Liquid Temperature : 21.3 °C ## DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch165/Area Scan (81x321x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.957 mW/g Ch165/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 3.921 W/kg SAR(1 g) = 0.896 mW/g; SAR(10 g) = 0.238 mW/g Maximum value of SAR (measured) = 2.372 mW/g # #21 WLAN 5GHz_802.11a_Edge4_0cm_Tablet PC_Ant Degree 0_149 **DUT: 2D1707** Communication System: WIFI; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5745 MHz; $\sigma = 5.963$ mho/m; $\varepsilon_r =$ 49.131; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C # DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch149/Area Scan (81x281x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.907 mW/g **Configuration/Ch149/Zoom Scan (8x8x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 3.723 W/kg SAR(1 g) = 0.854 mW/g; SAR(10 g) = 0.202 mW/g Maximum value of SAR (measured) = 2.185 mW/g ## #22 WLAN 5GHz 802.11a Edge4 0cm Tablet PC Ant Degree 0 157 **DUT: 2D1707** Communication System: WIFI; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5785 MHz; $\sigma = 5.995$ mho/m; $\varepsilon_r =$ 48.979; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C # DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch157/Area Scan (81x281x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 2.326 mW/g Ch157/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 5.233 W/kg SAR(1 g) = 1.160 mW/g; SAR(10 g) = 0.259 mW/g Maximum value of SAR (measured) = 3.201 mW/g # #23 WLAN 5GHz_802.11a_Edge4_0cm_Tablet PC_Ant Degree 180_149 **DUT: 2D1707** Communication System: WIFI; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: MSL_5000_130221 Medium parameters used: f = 5745 MHz; $\sigma = 5.963$ mho/m; $\varepsilon_r =$ 49.131; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C # DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch149/Area Scan (81x321x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.591 mW/g Ch149/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 2.727 W/kg SAR(1 g) = 0.637 mW/g; SAR(10 g) = 0.173 mW/g Maximum value of SAR (measured) = 1.572 mW/g # #24 WLAN 5GHz_802.11a_Edge4_0cm_Tablet PC_Ant Degree 180_157 **DUT: 2D1707** Communication System: WIFI; Frequency: 5785 MHz; Duty Cycle: 1:1 Medium: MSL 5000 130221 Medium parameters used: f = 5785 MHz; $\sigma = 5.995$ mho/m; $\varepsilon_r =$ 48.979; $\rho = 1000 \text{ kg/m}^3$ Ambient Temperature: 23.2 °C; Liquid Temperature: 21.3 °C # DASY5 Configuration: - Probe: EX3DV4 SN3857; ConvF(3.99, 3.99, 3.99); Calibrated: 2012-6-20 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1210; Calibrated: 2012-12-5 - Phantom: SAM3; Type: SAM; Serial: TP-1079 - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.4.5 (3634) **Ch157/Area Scan (81x321x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 1.666 mW/g Ch157/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.737 W/kg SAR(1 g) = 0.854 mW/g; SAR(10 g) = 0.231 mW/g Maximum value of SAR (measured) = 2.316 mW/g #### Appendix C. **DASY Calibration Certificate** The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL (KUNSHAN) INC. TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 : C1 of C1 Page Number Report Issued Date: Feb. 25, 2013 Report No.: FA2D1707 Report Version : Rev. 01 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: July 25, 2011 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton (Auden) Accreditation No.: SCS 108 C S Certificate No: D2450V2-736_Jul11 #### CALIBRATION CERTIFICATE D2450V2 - SN: 736 Object Calibration procedure(s) QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz Calibration date: July 25, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%, Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Reference 20 dB Attenuator SN: S5086 (20b) 29-Mar-11 (No. 217-01367) Apr-12 Type-N mismatch combination SN: 5047.2 / 06327 29-Mar-11 (No. 217-01371) Apr-12 Reference Probe ES3DV3 SN: 3205 29-Apr-11 (No. ES3-3205_Apr11) Apr-12 DAE4 SN: 601 04-Jul-11 (No. DAE4-601_Jul11) Jul-12 ID# Check Date (in house) Secondary Standards Scheduled Check Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-09) In house check: Oct-11 RF generator R&S SMT-06 100005 04-Aug-99 (in house check Oct-09) In house check: Oct-11 US37390585 S4206 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-10) In house check: Oct-11 Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by: This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-736_Jul11 Page 1 of 8 Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland 9 C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) Federal
Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-736_Jul11 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY5 | V52.6.2 | |------------------------|---| | Advanced Extrapolation | | | Modular Flat Phantom | | | 10 mm | with Spacer | | dx, dy , $dz = 5 mm$ | | | 2450 MHz ± 1 MHz | | | | DASY5 Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.85 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.9 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 54.8 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.44 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 25.6 mW /g ± 16.5 % (k=2) | ## **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.7 ± 6 % | 2.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 13.3 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 52.3 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|----------------------------| | SAR measured | 250 mW input power | 6.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 mW / g ± 16.5 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $54.4 \Omega + 1.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 27.0 dB | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | $50.8 \Omega + 2.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 30.7 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.159 ns | |----------------------------------|-----------| | | 11100 110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 26, 2003 | #### **DASY5 Validation Report for Head TSL** Date: 25.07.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 29.04.2011 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.095 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 28.615 W/kg SAR(1 g) = 13.9 mW/g; SAR(10 g) = 6.44 mW/g Maximum value of SAR (measured) = 18.121 mW/g 0 dB = 18.120 mW/g Certificate No: D2450V2-736_Jul11 Page 5 of 8 # Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 25.07.2011 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736 Communication System: CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 29.04.2011 • Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 04.07.2011 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) #### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.550 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 27.432 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.18 mW/g Maximum value of SAR (measured) = 17.294 mW/g Certificate No: D2450V2-736_Jul11 Page 7 of 8 # Impedance Measurement Plot for Body TSL Certificate No: D2450V2-736_Jul11 Page 8 of 8 # FCC Test Report # D2450V2, serial no. 736 Extended Dipole Calibrations Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | D 2450 V2 – serial no. 736 | | | | | | | | | | | | |------------------------|--|--------|----------------------------|----------------|---------------------------|----------------|---------------------|--------------|----------------------------|----------------|---------------------------|----------------| | 2450 Head | | | | | 2450 Bo | dy | | | | | | | | Date of
Measurement | Return-Loss
(dB) | Delta | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | Return-Loss
(dB) | Delta
(%) | Real
Impedance
(ohm) | Delta
(ohm) | Imaginary Impedance (ohm) | Delta
(ohm) | | 7.25.2011 | -27.042 | | 54.398 | | 1.4805 | | -30.696 | | 50.812 | | 2.8262 | | | 7.25.2012 | -27.950 | -3.365 | 52.541 | 1.857 | 0.77343 | 0.707 | -31.781 | -3.535 | 50.572 | 0.24 | 1.5953 | 1.2309 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # FCC Test Report # <Dipole Verification Data> - D2450 V2, serial no. 736 (Date of Measurement : 7.25.2012) 2450 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 ## 2450 MHz - Body TEL: 886-3-327-3456 FAX: 886-3-328-4978 # **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S S Accreditation No.: SCS 108 Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Certificate No: D5GHzV2-1006_Dec12 #
CALIBRATION CERTIFICATE Object D5GHzV2 - SN: 1006 Calibration procedure(s) **QA CAL-22.v1** Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: December 11, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Power sensor HP 8481A | US37292783 | 01-Nov-12 (No. 217-01640) | Oct-13 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 27-Mar-12 (No. 217-01530) | Apr-13 | | Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533) | Apr-13 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-11 (No. EX3-3503_Dec11) | Dec-12 | | DAE4 | SN: 601 | 27-Jun-12 (No. DAE4-601_Jun12) | Jun-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power sensor HP 8481A | MY41092317 | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13 | | RF generator R&S SMT-06 | 100005 | 04-Aug-99 (In house check Oct-11) | In house check: Oct-13 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 | | | Name | Function | Signature | | Calibrated by: | Israe El-Naouq | Laboratory Technician | Deran El- Daana | | Approved by: | Katja Pokovic | Technical Manager | 28 des | | | | | | Issued: December 11, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossarv: TSI tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010 - b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### **Additional Documentation:** c) DASY4/5 System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1006_Dec12 Page 2 of 14 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.3 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5300 MHz ± 1 MHz
5600 MHz ± 1 MHz
5800 MHz ± 1 MHz | | # Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.46 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.76 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.55 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.6 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 4.81 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.46 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.8 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.8 ± 6 % | 5.04 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 7777 | # SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------
--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.1 ± 6 % | 5.40 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 71.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.02 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.0 W/kg ± 19.5 % (k=2) | # **Body TSL parameters at 5300 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.9 ± 6 % | 5.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.41 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.07 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 19.5 % (k=2) | # **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 5.88 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.74 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.1 ± 6 % | 6.17 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 71.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.00 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.8 W/kg ± 19.5 % (k=2) | # **Appendix** # Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | J | 51.8 Ω - 10.7 jΩ | |--------------------------------------|-----|------------------| | Return Loss | 54° | - 19.5 dB | ## Antenna Parameters with Head TSL at 5300 MHz | Impedance, transformed to feed point | 56.1 Ω - 1.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | # Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.1 Ω - 6.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.4 dB | # Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 56.4 Ω + 3.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | # Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 51.9 Ω - 9.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.4 dB | # Antenna Parameters with Body TSL at 5300 MHz | Impedance, transformed to feed point | 56.0 Ω + 0.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.9 dB | # Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 56.9 Ω - 4.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.3 dB | # Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | 57.4 Ω + 5.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.1 dB | # **General Antenna Parameters and Design** | Electrical Delay (one direction) 1.199 ns | |---| |---| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 28, 2003 | #### **DASY5 Validation Report for Head TSL** Date: 11.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1006 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.46$ mho/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.55$ mho/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.81$ mho/m; $\epsilon_r = 34$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.04$ mho/m; $\epsilon_r = 33.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 30.12.2011, ConvF(5.1, 5.1, 5.1); Calibrated: 30.12.2011, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2011, ConvF(4.81, 4.81, 4.81); Calibrated: 30.12.2011; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.579 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.31 W/kg Maximum value of SAR (measured) = 19.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.080 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 31.6 W/kg SAR(1 g) = 8.34 W/kg; SAR(10 g) = 2.39 W/kg Maximum value of SAR (measured) = 20.2 W/kg #### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.445 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.46 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.9 W/kg Certificate No: D5GHzV2-1006_Dec12 Page 9 of 14 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.453 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 20.1 W/kg 0 dB = 20.1 W/kg = 13.03 dBW/kg ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 10.12.2012 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1006 Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.4$ mho/m; $\epsilon_r = 47.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.51$ mho/m; $\epsilon_r = 46.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600
MHz; $\sigma = 5.88$ mho/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.17$ mho/m; $\epsilon_r = 46.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2011, ConvF(4.67, 4.67, 4.67); Calibrated: 30.12.2011, ConvF(4.22, 4.22, 4.22); Calibrated: 30.12.2011, ConvF(4.38, 4.38, 4.38); Calibrated: 30.12.2011; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.06.2012 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.3(988); SEMCAD X 14.6.7(6848) #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.463 V/m: Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.4 W/kg SAR(1 g) = 7.2 W/kg; SAR(10 g) = 2.02 W/kg Maximum value of SAR (measured) = 16.8 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 54.513 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 30.0 W/kg SAR(1 g) = 7.41 W/kg; SAR(10 g) = 2.07 W/kg Maximum value of SAR (measured) = 17.5 W/kg #### Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 53.974 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 34.1 W/kg SAR(1 g) = 7.74 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 19.1 W/kg Certificate No: D5GHzV2-1006_Dec12 Page 12 of 14 # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 50.912 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 33.7 W/kg SAR(1 g) = 7.23 W/kg; SAR(10 g) = 2 W/kg Maximum value of SAR (measured) = 18.0 W/kg 0 dB = 18.0 W/kg = 12.55 dBW/kg ## Impedance Measurement Plot for Body TSL #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton - CN (Auden) Accreditation No.: SCS 108 C Certificate No: DAE4-1210 Dec12 # CALIBRATION CERTIFICATE Object DAE4 - SD 000 D04 BJ - SN: 1210 Calibration procedure(s) QA CAL-06.v25 Calibration procedure for the data acquisition electronics (DAE) Calibration date: December 05, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|-------------|----------------------------|-----------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 02-Oct-12 (No:12728) | Oct-13 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | | | | Name Function Signature Calibrated by: Dominique Steffen Technician Approved by: Fin Bomholt R&D Director Issued: December 5, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-1210_Dec12 Page 1 of 5 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. # **DC Voltage Measurement** A/D - Converter Resolution nominal $\begin{array}{lll} \mbox{High Range:} & \mbox{1LSB} = & \mbox{6.1} \mu \mbox{V} \; , \\ \mbox{Low Range:} & \mbox{1LSB} = & \mbox{61nV} \; , \end{array}$ full range = -1......+3mV full range = -100...+300 mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Y | Z | |---------------------|----------------------|----------------------|----------------------| | High Range | 404.091 ± 0.1% (k=2) | 404.919 ± 0.1% (k=2) | 405.025 ± 0.1% (k=2) | | Low Range | 3.99675 ± 0.7% (k=2) | 3.98227 ± 0.7% (k=2) | 3.99772 ± 0.7% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 68 ° ± 1 ° | |---|------------| | Connector Angle to be used in DASY system | 68 ° ± 1 ° | Certificate No: DAE4-1210_Dec12 Page 3 of 5 ## **Appendix** 1. DC Voltage Linearity | High Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199993.07 | -3.75 | -0.00 | | Channel X + Input | 20003.18 | 2.60 | 0.01 | | Channel X - Input | -19998.08 | 2.47 | -0.01 | | Channel Y + Input | 199994.94 | -1.35 | -0.00 | | Channel Y + Input | 19999.07 | -1.63 | -0.01 | | Channel Y - Input | -20000.95 | -0.44 | 0.00 | | Channel Z + Input | 199994.94 | -1.97 | -0.00 | | Channel Z + Input | 19999.33 | -1.29 | -0.01 | | Channel Z - Input | -20000.75 | -0.11 | 0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |--|---|---|-----------| | Channel X + Input
 2001.03 | 0.11 | 0.01 | | Channel X + Input | 201.53 | 0.16 | 0.08 | | Channel X - Input | -198.20 | 0.30 | -0.15 | | Channel Y + Input | 2000.11 | -0.85 | -0.04 | | Channel Y + Input | 201.00 | -0.41 | -0.20 | | Channel Y - Input | -199.21 | -0.67 | 0.34 | | Channel Z + Input | 2000.86 | 0.03 | 0.00 | | Channel Z + Input | 200.73 | -0.40 | -0.20 | | Channel Z - Input | -199.67 | -0.94 | 0.47 | | The state of s | 100000000000000000000000000000000000000 | 100000000000000000000000000000000000000 | 201001000 | ### 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -4.74 | -6.48 | | | - 200 | 8.83 | 7.16 | | Channel Y | 200 | -9.74 | -9.75 | | | - 200 | 5.98 | 5.81 | | Channel Z | 200 | 11.87 | 12.25 | | | - 200 | -14.43 | -13.83 | #### 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | - | 1.37 | -3.24 | | Channel Y | 200 | 8.19 | | 3.26 | | Channel Z | 200 | 9.26 | 5.75 | - | #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15949 | 17607 | | Channel Y | 15961 | 16469 | | Channel Z | 15876 | 17309 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation
(μV) | |-----------|--------------|------------------|------------------|------------------------| | Channel X | 1.08 | 0.33 | 2.52 | 0.41 | | Channel Y | -0.94 | -2.10 | -0.06 | 0.40 | | Channel Z | -0.82 | -1.73 | 0.09 | 0.39 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | |----------------|-------------------| | Supply (+ Vcc) | +7.9 | | Supply (- Vcc) | -7.6 | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton-TW (Auden) Certificate No: EX3-3857_Jun12 Accreditation No.: SCS 108 #### CALIBRATION CERTIFICATE Object EX3DV4 - SN:3857 Calibration procedure(s) QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4 Calibration procedure for dosimetric E-field probes Calibration date: June 20, 2012 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Power sensor E4412A | MY41498087 | 29-Mar-12 (No. 217-01508) | Apr-13 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 27-Mar-12 (No. 217-01531) | Apr-13 | | Reference 20 dB Attenuator | SN: S5086 (20b) | 27-Mar-12 (No. 217-01529) | Apr-13 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 27-Mar-12 (No. 217-01532) | Apr-13 | | Reference Probe ES3DV2 | SN: 3013 | 29-Dec-11 (No. ES3-3013_Dec11) | Dec-12 | | DAE4 | SN: 660 | 10-Jan-12 (No. DAE4-660_Jan12) | Jan-13 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-11) | In house check: Apr-13 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-11) | In house check: Oct-12 | Calibrated by: Name Jeton Kastrati Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: June 20, 2012 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,y,z diode compression point CF A, B, C crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 Certificate No: EX3-3857_Jun12 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis ### Calibration is Performed According to the Following Standards: IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. # Probe EX3DV4 SN:3857 Manufactured: Calibrated: January 23, 2012 June 20, 2012 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3857 **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.18 | 0.44 | 0.46 | ± 10.1 % | | DCP (mV) ^B | 97.3 | 100.5 | 98.0 | | Modulation Calibration Parameters | UID | Communication System Name | PAR | | A
dB | B
dB | C
dB | VR
mV | Unc ^E
(k=2) | |------|---------------------------|------|---|---------|---------|---------|----------|---------------------------| | 0 | CW | 0.00 | X | 0.00 | 0.00 | 1.00 | 152.9 | ±4.1 % | | 1000 | 00/00 | | Y | 0.00 | 0.00 | 1.00 | 199.2 | | | | | | Z | 0.00 | 0.00 | 1.00 | 147.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately
95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3857 June 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3857 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 41.9 | 0.89 | 9.25 | 9.25 | 9.25 | 0.14 | 1.52 | ± 12.0 % | | 835 | 41.5 | 0.90 | 8.74 | 8.74 | 8.74 | 0.10 | 2.56 | ± 12.0 % | | 900 | 41.5 | 0.97 | 8.75 | 8.75 | 8.75 | 0.10 | 2.73 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.14 | 8.14 | 8.14 | 0.60 | 0.71 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.84 | 7.84 | 7.84 | 0.54 | 0.78 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 6.87 | 6.87 | 6.87 | 0.34 | 1.08 | ± 12.0 % | | 5200 | 36.0 | 4.66 | 5.11 | 5.11 | 5.11 | 0.40 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.91 | 4.91 | 4.91 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.74 | 4.74 | 4.74 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.49 | 4.49 | 4.49 | 0.45 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.69 | 4.69 | 4.69 | 0.45 | 1.80 | ± 13.1 % | ^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. June 20, 2012 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3857 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity (S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha | Depth
(mm) | Unct.
(k=2) | |----------------------|----------------------------|---------------------------------|---------|---------|---------|-------|---------------|----------------| | 750 | 55.5 | 0.96 | 9.18 | 9.18 | 9.18 | 0.15 | 1.79 | ± 12.0 % | | 835 | 55.2 | 0.97 | 8.98 | 8.98 | 8.98 | 0.14 | 1.88 | ± 12.0 % | | 900 | 55.0 | 1.05 | 8.94 | 8.94 | 8.94 | 0.24 | 1.20 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.68 | 7.68 | 7.68 | 0.23 | 1.25 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.35 | 7.35 | 7.35 | 0.12 | 2.37 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.94 | 6.94 | 6.94 | 0.80 | 0.50 | ± 12.0 % | | 5200 | 49.0 | 5.30 | 4.30 | 4.30 | 4.30 | 0.50 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.15 | 4.15 | 4.15 | 0.45 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.91 | 3.91 | 3.91 | 0.52 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.06 | 4.06 | 4.06 | 0.42 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 3.99 | 3.99 | 3.99 | 0.55 | 1.90 | ± 13.1 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Tot # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3857 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 135.9 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | # Appendix D. Product Photos TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : D1 of D2 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 #### **Antenna Location:** | Antenna | Length | Width | |-----------------------------------|---------|---------| | WLAN Antenna <tx rx=""></tx> | 7.7 cm | 2.1 cm | | Bluetooth Antenna <tx rx=""></tx> | 7.7 cm | 2.1 cm | | EUT | 24.5 cm | 23.0 cm | | The shortest distance between the Tx | antennas | |--------------------------------------|----------| | WLAN Antenna to Bluetooth Antenna | 21.0 cm | TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : D2 of D2 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 # Appendix E. Test Setup Photos Bottom of Laptop with Phantom 0 cm Gap -Antenna Position 0° Bottom of Laptop with Phantom 0 cm Gap -Antenna Position 180° **Bottom of Tablet with Phantom 0 cm - Antenna** Position 0° Bottom of Tablet with Phantom 0 cm - Antenna Position 180° SPORTON INTERNATIONAL (KUNSHAN) INC TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : E1 of E3 Report Issued Date: Feb. 25, 2013 Report Version : Rev. 01 Edge1 with Phantom 0 cm - Antenna Position 0° Edge1 with Phantom 0 cm - Antenna Position180° Edge2 with Phantom 0 cm - Antenna Position 0° Edge2 with Phantom 0 cm - Antenna Position180° Edge3 with Phantom 0 cm - Antenna Position 0° Edge3 with Phantom 0 cm - Antenna Position180° SPORTON INTERNATIONAL (KUNSHAN) INC TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : E2 of E3 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Edge4 with Phantom 0 cm - Antenna Position 0° Edge4 with Phantom 0 cm - Antenna Position180° TEL: 86-0512-5790-0158 FAX: 86-0512-5790-0958 FCC ID: HFS-CL4 Page Number : E3 of E3 Report Issued Date : Feb. 25, 2013 Report Version : Rev. 01 Report No.: FA2D1707